Some accelerated alternating proximal gradient algorithms for a class of nonconvex nonsmooth problems
In this paper, we study a class of nonconvex and nonsmooth optimization problems, whose objective function can be split into two separable terms and one coupling term. Alternating proximal gradient methods combining with extrapolation are proposed to solve such problems. Under some assumptions, we p...
Uloženo v:
| Vydáno v: | Journal of global optimization Ročník 87; číslo 2-4; s. 939 - 964 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.11.2023
Springer |
| Témata: | |
| ISSN: | 0925-5001, 1573-2916 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we study a class of nonconvex and nonsmooth optimization problems, whose objective function can be split into two separable terms and one coupling term. Alternating proximal gradient methods combining with extrapolation are proposed to solve such problems. Under some assumptions, we prove that every cluster point of the sequence generated by our algorithms is a critical point. Furthermore, if the objective function satisfies Kurdyka–Łojasiewicz property, the generated sequence is globally convergent to a critical point. In order to make the algorithm more effective and flexible, we also use some strategies to update the extrapolation parameter and solve the problems with unknown Lipschitz constant. Numerical experiments demonstrate the effectiveness of our algorithms. |
|---|---|
| ISSN: | 0925-5001 1573-2916 |
| DOI: | 10.1007/s10898-022-01214-3 |