Modeling with fractional difference equations
In this paper, we develop some basics of discrete fractional calculus such as Leibniz rule and summation by parts formula. We define simplest discrete fractional calculus of variations problem and derive Euler–Lagrange equation. We introduce and solve Gompertz fractional difference equation for tumo...
Uložené v:
| Vydané v: | Journal of mathematical analysis and applications Ročník 369; číslo 1; s. 1 - 9 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier Inc
01.09.2010
Elsevier |
| Predmet: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we develop some basics of discrete fractional calculus such as Leibniz rule and summation by parts formula. We define simplest discrete fractional calculus of variations problem and derive Euler–Lagrange equation. We introduce and solve Gompertz fractional difference equation for tumor growth models. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/j.jmaa.2010.02.009 |