Modeling with fractional difference equations
In this paper, we develop some basics of discrete fractional calculus such as Leibniz rule and summation by parts formula. We define simplest discrete fractional calculus of variations problem and derive Euler–Lagrange equation. We introduce and solve Gompertz fractional difference equation for tumo...
Uloženo v:
| Vydáno v: | Journal of mathematical analysis and applications Ročník 369; číslo 1; s. 1 - 9 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier Inc
01.09.2010
Elsevier |
| Témata: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we develop some basics of discrete fractional calculus such as Leibniz rule and summation by parts formula. We define simplest discrete fractional calculus of variations problem and derive Euler–Lagrange equation. We introduce and solve Gompertz fractional difference equation for tumor growth models. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/j.jmaa.2010.02.009 |