A constant-factor approximation for weighted bond cover

The WeightedF-Vertex Deletion for a class F of graphs asks, weighted graph G, for a minimum weight vertex set S such that G−S∈F. The case when F is minor-closed and excludes some graph as a minor has received particular attention but a constant-factor approximation remained elusive for WeightedF-Ver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computer and system sciences Jg. 149; S. 103617
Hauptverfasser: Kim, Eun Jung, Lee, Euiwoong, Thilikos, Dimitrios M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.05.2025
Elsevier
Schlagworte:
ISSN:0022-0000, 1090-2724
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The WeightedF-Vertex Deletion for a class F of graphs asks, weighted graph G, for a minimum weight vertex set S such that G−S∈F. The case when F is minor-closed and excludes some graph as a minor has received particular attention but a constant-factor approximation remained elusive for WeightedF-Vertex Deletion. Only three cases of minor-closed F are known to admit constant-factor approximations, namely Vertex Cover, Feedback Vertex Set and Diamond Hitting Set. We study the problem for the class F of θc-minor-free graphs, under the equivalent setting of the Weightedc-Bond Cover problem, and present a constant-factor approximation algorithm using the primal-dual method. Besides making an important step in the quest of (dis)proving a constant-factor approximation for WeightedF-Vertex Deletion, our result may be useful as a template for algorithms for other minor-closed families.
ISSN:0022-0000
1090-2724
DOI:10.1016/j.jcss.2024.103617