A constant-factor approximation for weighted bond cover

The WeightedF-Vertex Deletion for a class F of graphs asks, weighted graph G, for a minimum weight vertex set S such that G−S∈F. The case when F is minor-closed and excludes some graph as a minor has received particular attention but a constant-factor approximation remained elusive for WeightedF-Ver...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computer and system sciences Ročník 149; s. 103617
Hlavní autoři: Kim, Eun Jung, Lee, Euiwoong, Thilikos, Dimitrios M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.05.2025
Elsevier
Témata:
ISSN:0022-0000, 1090-2724
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The WeightedF-Vertex Deletion for a class F of graphs asks, weighted graph G, for a minimum weight vertex set S such that G−S∈F. The case when F is minor-closed and excludes some graph as a minor has received particular attention but a constant-factor approximation remained elusive for WeightedF-Vertex Deletion. Only three cases of minor-closed F are known to admit constant-factor approximations, namely Vertex Cover, Feedback Vertex Set and Diamond Hitting Set. We study the problem for the class F of θc-minor-free graphs, under the equivalent setting of the Weightedc-Bond Cover problem, and present a constant-factor approximation algorithm using the primal-dual method. Besides making an important step in the quest of (dis)proving a constant-factor approximation for WeightedF-Vertex Deletion, our result may be useful as a template for algorithms for other minor-closed families.
ISSN:0022-0000
1090-2724
DOI:10.1016/j.jcss.2024.103617