Multivariate Algorithmics for Finding Cohesive Subnetworks
Community detection is an important task in the analysis of biological, social or technical networks. We survey different models of cohesive graphs, commonly referred to as clique relaxations, that are used in the detection of network communities. For each clique relaxation, we give an overview of b...
Uloženo v:
| Vydáno v: | Algorithms Ročník 9; číslo 1; s. 21 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
MDPI AG
01.03.2016
|
| Témata: | |
| ISSN: | 1999-4893, 1999-4893 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Community detection is an important task in the analysis of biological, social or technical networks. We survey different models of cohesive graphs, commonly referred to as clique relaxations, that are used in the detection of network communities. For each clique relaxation, we give an overview of basic model properties and of the complexity of the problem of finding large cohesive subgraphs under this model. Since this problem is usually NP-hard, we focus on combinatorial fixed-parameter algorithms exploiting typical structural properties of input networks. |
|---|---|
| ISSN: | 1999-4893 1999-4893 |
| DOI: | 10.3390/a9010021 |