Multivariate Algorithmics for Finding Cohesive Subnetworks

Community detection is an important task in the analysis of biological, social or technical networks. We survey different models of cohesive graphs, commonly referred to as clique relaxations, that are used in the detection of network communities. For each clique relaxation, we give an overview of b...

Full description

Saved in:
Bibliographic Details
Published in:Algorithms Vol. 9; no. 1; p. 21
Main Author: Komusiewicz, Christian
Format: Journal Article
Language:English
Published: MDPI AG 01.03.2016
Subjects:
ISSN:1999-4893, 1999-4893
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Community detection is an important task in the analysis of biological, social or technical networks. We survey different models of cohesive graphs, commonly referred to as clique relaxations, that are used in the detection of network communities. For each clique relaxation, we give an overview of basic model properties and of the complexity of the problem of finding large cohesive subgraphs under this model. Since this problem is usually NP-hard, we focus on combinatorial fixed-parameter algorithms exploiting typical structural properties of input networks.
ISSN:1999-4893
1999-4893
DOI:10.3390/a9010021