A Numerically Efficient Multi-Objective Optimization Algorithm: Combination of Dynamic Taylor Kriging and Differential Evolution

A dynamic Taylor Kriging (DTK) is newly developed and combined with a multi-objective differential evolution algorithm to get a numerically efficient multi-objective optimization strategy. In the DTK, basis functions are not predefined but optimally selected so that the fitting error with the given...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on magnetics Ročník 51; číslo 3; s. 1 - 4
Hlavní autori: Bin Xia, Baatar, Nyambayar, Ziyan Ren, Chang-Seop Koh
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.03.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9464, 1941-0069
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A dynamic Taylor Kriging (DTK) is newly developed and combined with a multi-objective differential evolution algorithm to get a numerically efficient multi-objective optimization strategy. In the DTK, basis functions are not predefined but optimally selected so that the fitting error with the given sampling data may be minimized. In the developed multi-objective optimization algorithm, the DTK provides predicted objective function values as an alternative to direct finite-element analysis. The effectiveness of the proposed DTK and multi-objective optimization strategy are verified through applications to analytic example and TEAM 22.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2014.2362938