A Numerically Efficient Multi-Objective Optimization Algorithm: Combination of Dynamic Taylor Kriging and Differential Evolution

A dynamic Taylor Kriging (DTK) is newly developed and combined with a multi-objective differential evolution algorithm to get a numerically efficient multi-objective optimization strategy. In the DTK, basis functions are not predefined but optimally selected so that the fitting error with the given...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on magnetics Ročník 51; číslo 3; s. 1 - 4
Hlavní autoři: Bin Xia, Baatar, Nyambayar, Ziyan Ren, Chang-Seop Koh
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.03.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9464, 1941-0069
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A dynamic Taylor Kriging (DTK) is newly developed and combined with a multi-objective differential evolution algorithm to get a numerically efficient multi-objective optimization strategy. In the DTK, basis functions are not predefined but optimally selected so that the fitting error with the given sampling data may be minimized. In the developed multi-objective optimization algorithm, the DTK provides predicted objective function values as an alternative to direct finite-element analysis. The effectiveness of the proposed DTK and multi-objective optimization strategy are verified through applications to analytic example and TEAM 22.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2014.2362938