A Numerically Efficient Multi-Objective Optimization Algorithm: Combination of Dynamic Taylor Kriging and Differential Evolution
A dynamic Taylor Kriging (DTK) is newly developed and combined with a multi-objective differential evolution algorithm to get a numerically efficient multi-objective optimization strategy. In the DTK, basis functions are not predefined but optimally selected so that the fitting error with the given...
Uloženo v:
| Vydáno v: | IEEE transactions on magnetics Ročník 51; číslo 3; s. 1 - 4 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.03.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9464, 1941-0069 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A dynamic Taylor Kriging (DTK) is newly developed and combined with a multi-objective differential evolution algorithm to get a numerically efficient multi-objective optimization strategy. In the DTK, basis functions are not predefined but optimally selected so that the fitting error with the given sampling data may be minimized. In the developed multi-objective optimization algorithm, the DTK provides predicted objective function values as an alternative to direct finite-element analysis. The effectiveness of the proposed DTK and multi-objective optimization strategy are verified through applications to analytic example and TEAM 22. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0018-9464 1941-0069 |
| DOI: | 10.1109/TMAG.2014.2362938 |