Random sampling of contingency tables via probabilistic divide-and-conquer

We present a new approach for random sampling of contingency tables of any size and constraints based on a recently introduced probabilistic divide-and-conquer (PDC) technique. Our first application is a recursive PDC: it samples the least significant bit of each entry in the table, motivated by the...

Full description

Saved in:
Bibliographic Details
Published in:Computational statistics Vol. 35; no. 2; pp. 837 - 869
Main Authors: DeSalvo, Stephen, Zhao, James
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2020
Springer Nature B.V
Subjects:
ISSN:0943-4062, 1613-9658
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a new approach for random sampling of contingency tables of any size and constraints based on a recently introduced probabilistic divide-and-conquer (PDC) technique. Our first application is a recursive PDC: it samples the least significant bit of each entry in the table, motivated by the fact that the bits of a geometric random variable are independent. The second application is via PDC deterministic second half, where one divides the sample space into two pieces, one of which is deterministic conditional on the other; this approach is highlighted via an exact sampling algorithm in the 2 × n case. Finally, we also present a generalization to the sampling algorithm where each entry of the table has a specified marginal distribution.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0943-4062
1613-9658
DOI:10.1007/s00180-019-00899-7