Random sampling of contingency tables via probabilistic divide-and-conquer

We present a new approach for random sampling of contingency tables of any size and constraints based on a recently introduced probabilistic divide-and-conquer (PDC) technique. Our first application is a recursive PDC: it samples the least significant bit of each entry in the table, motivated by the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational statistics Ročník 35; číslo 2; s. 837 - 869
Hlavní autoři: DeSalvo, Stephen, Zhao, James
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2020
Springer Nature B.V
Témata:
ISSN:0943-4062, 1613-9658
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a new approach for random sampling of contingency tables of any size and constraints based on a recently introduced probabilistic divide-and-conquer (PDC) technique. Our first application is a recursive PDC: it samples the least significant bit of each entry in the table, motivated by the fact that the bits of a geometric random variable are independent. The second application is via PDC deterministic second half, where one divides the sample space into two pieces, one of which is deterministic conditional on the other; this approach is highlighted via an exact sampling algorithm in the 2 × n case. Finally, we also present a generalization to the sampling algorithm where each entry of the table has a specified marginal distribution.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0943-4062
1613-9658
DOI:10.1007/s00180-019-00899-7