Quantitative Homogenization of State-Constraint Hamilton–Jacobi Equations on Perforated Domains and Applications

We study the periodic homogenization problem of state-constraint Hamilton–Jacobi equations on perforated domains in the convex setting and obtain the optimal convergence rate. We then consider a dilute situation in which the diameter of the holes is much smaller than the microscopic scale. Finally,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis Jg. 249; H. 2; S. 18
Hauptverfasser: Han, Yuxi, Jing, Wenjia, Mitake, Hiroyoshi, Tran, Hung V.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2025
Springer Nature B.V
Schlagworte:
ISSN:0003-9527, 1432-0673
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the periodic homogenization problem of state-constraint Hamilton–Jacobi equations on perforated domains in the convex setting and obtain the optimal convergence rate. We then consider a dilute situation in which the diameter of the holes is much smaller than the microscopic scale. Finally, a homogenization problem with domain defects where some holes are missing is analyzed.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0003-9527
1432-0673
DOI:10.1007/s00205-025-02091-2