Quantitative Homogenization of State-Constraint Hamilton–Jacobi Equations on Perforated Domains and Applications
We study the periodic homogenization problem of state-constraint Hamilton–Jacobi equations on perforated domains in the convex setting and obtain the optimal convergence rate. We then consider a dilute situation in which the diameter of the holes is much smaller than the microscopic scale. Finally,...
Gespeichert in:
| Veröffentlicht in: | Archive for rational mechanics and analysis Jg. 249; H. 2; S. 18 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0003-9527, 1432-0673 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We study the periodic homogenization problem of state-constraint Hamilton–Jacobi equations on perforated domains in the convex setting and obtain the optimal convergence rate. We then consider a dilute situation in which the diameter of the holes is much smaller than the microscopic scale. Finally, a homogenization problem with domain defects where some holes are missing is analyzed. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0003-9527 1432-0673 |
| DOI: | 10.1007/s00205-025-02091-2 |