Quantitative Homogenization of State-Constraint Hamilton–Jacobi Equations on Perforated Domains and Applications

We study the periodic homogenization problem of state-constraint Hamilton–Jacobi equations on perforated domains in the convex setting and obtain the optimal convergence rate. We then consider a dilute situation in which the diameter of the holes is much smaller than the microscopic scale. Finally,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Archive for rational mechanics and analysis Ročník 249; číslo 2; s. 18
Hlavní autoři: Han, Yuxi, Jing, Wenjia, Mitake, Hiroyoshi, Tran, Hung V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2025
Springer Nature B.V
Témata:
ISSN:0003-9527, 1432-0673
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study the periodic homogenization problem of state-constraint Hamilton–Jacobi equations on perforated domains in the convex setting and obtain the optimal convergence rate. We then consider a dilute situation in which the diameter of the holes is much smaller than the microscopic scale. Finally, a homogenization problem with domain defects where some holes are missing is analyzed.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0003-9527
1432-0673
DOI:10.1007/s00205-025-02091-2