Discrete Gaussian measures and new bounds of the smoothing parameter for lattices
In this paper, we start with a discussion of discrete Gaussian measures on lattices. Several results of Banaszczyk are analyzed, a simple form of uncertainty principle for discrete Gaussian measure is formulated. In the second part of the paper we prove two new bounds for the smoothing parameter of...
Uložené v:
| Vydané v: | Applicable algebra in engineering, communication and computing Ročník 32; číslo 5; s. 637 - 650 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2021
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0938-1279, 1432-0622 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we start with a discussion of discrete Gaussian measures on lattices. Several results of Banaszczyk are analyzed, a simple form of uncertainty principle for discrete Gaussian measure is formulated. In the second part of the paper we prove two new bounds for the smoothing parameter of lattices. Under the natural assumption that
ε
is suitably small, we obtain two estimations of the smoothing parameter:
η
ε
(
Z
)
≤
ln
(
ε
44
+
2
ε
)
π
.
This is a practically useful case. For this case, our upper bound is very close to the exact value of
η
ε
(
Z
)
in that
ln
(
ε
44
+
2
ε
)
π
-
η
ε
(
Z
)
≤
ε
2
552
.
For a lattice
L
⊂
R
n
of dimension
n
,
η
ε
(
L
)
≤
ln
(
n
-
1
+
2
n
ε
)
π
bl
~
(
L
)
. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0938-1279 1432-0622 |
| DOI: | 10.1007/s00200-020-00417-z |