Discrete Gaussian measures and new bounds of the smoothing parameter for lattices

In this paper, we start with a discussion of discrete Gaussian measures on lattices. Several results of Banaszczyk are analyzed, a simple form of uncertainty principle for discrete Gaussian measure is formulated. In the second part of the paper we prove two new bounds for the smoothing parameter of...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applicable algebra in engineering, communication and computing Ročník 32; číslo 5; s. 637 - 650
Hlavní autori: Zheng, Zhongxiang, Zhao, Chunhuan, Xu, Guangwu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2021
Springer Nature B.V
Predmet:
ISSN:0938-1279, 1432-0622
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we start with a discussion of discrete Gaussian measures on lattices. Several results of Banaszczyk are analyzed, a simple form of uncertainty principle for discrete Gaussian measure is formulated. In the second part of the paper we prove two new bounds for the smoothing parameter of lattices. Under the natural assumption that ε is suitably small, we obtain two estimations of the smoothing parameter: η ε ( Z ) ≤ ln ( ε 44 + 2 ε ) π . This is a practically useful case. For this case, our upper bound is very close to the exact value of η ε ( Z ) in that ln ( ε 44 + 2 ε ) π - η ε ( Z ) ≤ ε 2 552 . For a lattice L ⊂ R n of dimension n , η ε ( L ) ≤ ln ( n - 1 + 2 n ε ) π bl ~ ( L ) .
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0938-1279
1432-0622
DOI:10.1007/s00200-020-00417-z