Discrete Gaussian measures and new bounds of the smoothing parameter for lattices

In this paper, we start with a discussion of discrete Gaussian measures on lattices. Several results of Banaszczyk are analyzed, a simple form of uncertainty principle for discrete Gaussian measure is formulated. In the second part of the paper we prove two new bounds for the smoothing parameter of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applicable algebra in engineering, communication and computing Ročník 32; číslo 5; s. 637 - 650
Hlavní autoři: Zheng, Zhongxiang, Zhao, Chunhuan, Xu, Guangwu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2021
Springer Nature B.V
Témata:
ISSN:0938-1279, 1432-0622
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we start with a discussion of discrete Gaussian measures on lattices. Several results of Banaszczyk are analyzed, a simple form of uncertainty principle for discrete Gaussian measure is formulated. In the second part of the paper we prove two new bounds for the smoothing parameter of lattices. Under the natural assumption that ε is suitably small, we obtain two estimations of the smoothing parameter: η ε ( Z ) ≤ ln ( ε 44 + 2 ε ) π . This is a practically useful case. For this case, our upper bound is very close to the exact value of η ε ( Z ) in that ln ( ε 44 + 2 ε ) π - η ε ( Z ) ≤ ε 2 552 . For a lattice L ⊂ R n of dimension n , η ε ( L ) ≤ ln ( n - 1 + 2 n ε ) π bl ~ ( L ) .
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0938-1279
1432-0622
DOI:10.1007/s00200-020-00417-z