Conducting Flat Drops in a Confining Potential

We study a geometric variational problem arising from modeling two-dimensional charged drops of a perfectly conducting liquid in the presence of an external potential. We characterize the semicontinuous envelope of the energy in terms of a parameter measuring the relative strength of the Coulomb int...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Archive for rational mechanics and analysis Ročník 243; číslo 3; s. 1773 - 1810
Hlavní autori: Muratov, Cyrill B., Novaga, Matteo, Ruffini, Berardo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2022
Springer Nature B.V
Predmet:
ISSN:0003-9527, 1432-0673
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We study a geometric variational problem arising from modeling two-dimensional charged drops of a perfectly conducting liquid in the presence of an external potential. We characterize the semicontinuous envelope of the energy in terms of a parameter measuring the relative strength of the Coulomb interaction. As a consequence, when the potential is confining and the Coulomb repulsion strength is below a critical value, we show existence and regularity estimates for volume-constrained minimizers. We also derive the Euler–Lagrange equation satisfied by regular critical points, expressing the first variation of the Coulombic energy in terms of the normal 1 2 -derivative of the capacitary potential.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0003-9527
1432-0673
DOI:10.1007/s00205-021-01738-0