Conducting Flat Drops in a Confining Potential

We study a geometric variational problem arising from modeling two-dimensional charged drops of a perfectly conducting liquid in the presence of an external potential. We characterize the semicontinuous envelope of the energy in terms of a parameter measuring the relative strength of the Coulomb int...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Archive for rational mechanics and analysis Ročník 243; číslo 3; s. 1773 - 1810
Hlavní autoři: Muratov, Cyrill B., Novaga, Matteo, Ruffini, Berardo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2022
Springer Nature B.V
Témata:
ISSN:0003-9527, 1432-0673
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study a geometric variational problem arising from modeling two-dimensional charged drops of a perfectly conducting liquid in the presence of an external potential. We characterize the semicontinuous envelope of the energy in terms of a parameter measuring the relative strength of the Coulomb interaction. As a consequence, when the potential is confining and the Coulomb repulsion strength is below a critical value, we show existence and regularity estimates for volume-constrained minimizers. We also derive the Euler–Lagrange equation satisfied by regular critical points, expressing the first variation of the Coulombic energy in terms of the normal 1 2 -derivative of the capacitary potential.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0003-9527
1432-0673
DOI:10.1007/s00205-021-01738-0