Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy

With the improving sensitivity of the global network of gravitational-wave detectors, we expect to observe hundreds of transient gravitational-wave events per year. The current methods used to estimate their source parameters employ optimally sensitive but computationally costly Bayesian inference a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature physics Ročník 18; číslo 1; s. 112 - 117
Hlavní autoři: Gabbard, Hunter, Messenger, Chris, Heng, Ik Siong, Tonolini, Francesco, Murray-Smith, Roderick
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 01.01.2022
Nature Publishing Group
Témata:
ISSN:1745-2473, 1745-2481
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:With the improving sensitivity of the global network of gravitational-wave detectors, we expect to observe hundreds of transient gravitational-wave events per year. The current methods used to estimate their source parameters employ optimally sensitive but computationally costly Bayesian inference approaches, where typical analyses have taken between 6 h and 6 d. For binary neutron star and neutron star–black hole systems prompt counterpart electromagnetic signatures are expected on timescales between 1 s and 1 min. However, the current fastest method for alerting electromagnetic follow-up observers can provide estimates in of the order of 1 min on a limited range of key source parameters. Here, we show that a conditional variational autoencoder pretrained on binary black hole signals can return Bayesian posterior probability estimates. The training procedure need only be performed once for a given prior parameter space and the resulting trained machine can then generate samples describing the posterior distribution around six orders of magnitude faster than existing techniques. A method for estimating the source properties of gravitational-wave events shows a speed-up of six orders of magnitude over established approaches. This is a promising tool for follow-up observations of electromagnetic counterparts.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1745-2473
1745-2481
DOI:10.1038/s41567-021-01425-7