Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy
With the improving sensitivity of the global network of gravitational-wave detectors, we expect to observe hundreds of transient gravitational-wave events per year. The current methods used to estimate their source parameters employ optimally sensitive but computationally costly Bayesian inference a...
Gespeichert in:
| Veröffentlicht in: | Nature physics Jg. 18; H. 1; S. 112 - 117 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
01.01.2022
Nature Publishing Group |
| Schlagworte: | |
| ISSN: | 1745-2473, 1745-2481 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | With the improving sensitivity of the global network of gravitational-wave detectors, we expect to observe hundreds of transient gravitational-wave events per year. The current methods used to estimate their source parameters employ optimally sensitive but computationally costly Bayesian inference approaches, where typical analyses have taken between 6 h and 6 d. For binary neutron star and neutron star–black hole systems prompt counterpart electromagnetic signatures are expected on timescales between 1 s and 1 min. However, the current fastest method for alerting electromagnetic follow-up observers can provide estimates in of the order of 1 min on a limited range of key source parameters. Here, we show that a conditional variational autoencoder pretrained on binary black hole signals can return Bayesian posterior probability estimates. The training procedure need only be performed once for a given prior parameter space and the resulting trained machine can then generate samples describing the posterior distribution around six orders of magnitude faster than existing techniques.
A method for estimating the source properties of gravitational-wave events shows a speed-up of six orders of magnitude over established approaches. This is a promising tool for follow-up observations of electromagnetic counterparts. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1745-2473 1745-2481 |
| DOI: | 10.1038/s41567-021-01425-7 |