Linear inequalities concerning partitions into distinct parts
Linear inequalities involving Euler’s partition function p ( n ) have been the subject of recent studies. In this article, we consider the partition function Q ( n ) counting the partitions of n into distinct parts. Using truncated theta series, we provide four infinite families of linear inequaliti...
Gespeichert in:
| Veröffentlicht in: | The Ramanujan journal Jg. 58; H. 2; S. 491 - 503 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.06.2022
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1382-4090, 1572-9303 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Linear inequalities involving Euler’s partition function
p
(
n
) have been the subject of recent studies. In this article, we consider the partition function
Q
(
n
) counting the partitions of
n
into distinct parts. Using truncated theta series, we provide four infinite families of linear inequalities for
Q
(
n
) and partition theoretic interpretations for these results. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1382-4090 1572-9303 |
| DOI: | 10.1007/s11139-021-00427-6 |