Linear inequalities concerning partitions into distinct parts

Linear inequalities involving Euler’s partition function p ( n ) have been the subject of recent studies. In this article, we consider the partition function Q ( n ) counting the partitions of n into distinct parts. Using truncated theta series, we provide four infinite families of linear inequaliti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ramanujan journal Jg. 58; H. 2; S. 491 - 503
1. Verfasser: Merca, Mircea
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.06.2022
Springer Nature B.V
Schlagworte:
ISSN:1382-4090, 1572-9303
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Linear inequalities involving Euler’s partition function p ( n ) have been the subject of recent studies. In this article, we consider the partition function Q ( n ) counting the partitions of n into distinct parts. Using truncated theta series, we provide four infinite families of linear inequalities for Q ( n ) and partition theoretic interpretations for these results.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1382-4090
1572-9303
DOI:10.1007/s11139-021-00427-6