Linear inequalities concerning partitions into distinct parts
Linear inequalities involving Euler’s partition function p ( n ) have been the subject of recent studies. In this article, we consider the partition function Q ( n ) counting the partitions of n into distinct parts. Using truncated theta series, we provide four infinite families of linear inequaliti...
Uloženo v:
| Vydáno v: | The Ramanujan journal Ročník 58; číslo 2; s. 491 - 503 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.06.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 1382-4090, 1572-9303 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Linear inequalities involving Euler’s partition function
p
(
n
) have been the subject of recent studies. In this article, we consider the partition function
Q
(
n
) counting the partitions of
n
into distinct parts. Using truncated theta series, we provide four infinite families of linear inequalities for
Q
(
n
) and partition theoretic interpretations for these results. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1382-4090 1572-9303 |
| DOI: | 10.1007/s11139-021-00427-6 |