Linear inequalities concerning partitions into distinct parts

Linear inequalities involving Euler’s partition function p ( n ) have been the subject of recent studies. In this article, we consider the partition function Q ( n ) counting the partitions of n into distinct parts. Using truncated theta series, we provide four infinite families of linear inequaliti...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Ramanujan journal Ročník 58; číslo 2; s. 491 - 503
Hlavný autor: Merca, Mircea
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.06.2022
Springer Nature B.V
Predmet:
ISSN:1382-4090, 1572-9303
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Linear inequalities involving Euler’s partition function p ( n ) have been the subject of recent studies. In this article, we consider the partition function Q ( n ) counting the partitions of n into distinct parts. Using truncated theta series, we provide four infinite families of linear inequalities for Q ( n ) and partition theoretic interpretations for these results.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1382-4090
1572-9303
DOI:10.1007/s11139-021-00427-6