A comparison study on anomaly detection methods in manufacturing process monitoring with X-ray images

Process monitoring and anomaly detection in manufacturing production systems are of vital importance in the consistency, reliability, and quality of manufacturing operations, which motivates the development of a large number of anomaly detection methods. In this work, a comparison study on represent...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of intelligent manufacturing Ročník 36; číslo 6; s. 4389 - 4409
Hlavní autori: Huang, Congfang, Blondheim, David, Zhou, Shiyu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.08.2025
Springer Nature B.V
Predmet:
ISSN:0956-5515, 1572-8145
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Process monitoring and anomaly detection in manufacturing production systems are of vital importance in the consistency, reliability, and quality of manufacturing operations, which motivates the development of a large number of anomaly detection methods. In this work, a comparison study on representative unsupervised X-ray image based anomaly detection methods is conducted. Statistical, physical, and deep learning based dimension reduction methods and different anomaly detection criteria are considered and compared. Case studies on real-world X-ray image data with simulated anomalies and real anomalies are both carried out. Grey level co-occurrence matrix with Hotelling T 2 statistic as detection criteria achieves the best performance on the simulated anomalies case with an overall detection accuracy of 96%. Principal component analysis with reconstruction error as criteria obtains the highest detection rate of 90.6% in the real anomalies case. Considering the ever-growing availability of image data in intelligent manufacturing processes, this study will provide very useful knowledge and find a broad audience.
AbstractList Process monitoring and anomaly detection in manufacturing production systems are of vital importance in the consistency, reliability, and quality of manufacturing operations, which motivates the development of a large number of anomaly detection methods. In this work, a comparison study on representative unsupervised X-ray image based anomaly detection methods is conducted. Statistical, physical, and deep learning based dimension reduction methods and different anomaly detection criteria are considered and compared. Case studies on real-world X-ray image data with simulated anomalies and real anomalies are both carried out. Grey level co-occurrence matrix with Hotelling T 2 statistic as detection criteria achieves the best performance on the simulated anomalies case with an overall detection accuracy of 96%. Principal component analysis with reconstruction error as criteria obtains the highest detection rate of 90.6% in the real anomalies case. Considering the ever-growing availability of image data in intelligent manufacturing processes, this study will provide very useful knowledge and find a broad audience.
Process monitoring and anomaly detection in manufacturing production systems are of vital importance in the consistency, reliability, and quality of manufacturing operations, which motivates the development of a large number of anomaly detection methods. In this work, a comparison study on representative unsupervised X-ray image based anomaly detection methods is conducted. Statistical, physical, and deep learning based dimension reduction methods and different anomaly detection criteria are considered and compared. Case studies on real-world X-ray image data with simulated anomalies and real anomalies are both carried out. Grey level co-occurrence matrix with Hotelling T2 statistic as detection criteria achieves the best performance on the simulated anomalies case with an overall detection accuracy of 96%. Principal component analysis with reconstruction error as criteria obtains the highest detection rate of 90.6% in the real anomalies case. Considering the ever-growing availability of image data in intelligent manufacturing processes, this study will provide very useful knowledge and find a broad audience.
Author Blondheim, David
Zhou, Shiyu
Huang, Congfang
Author_xml – sequence: 1
  givenname: Congfang
  orcidid: 0000-0003-0488-1573
  surname: Huang
  fullname: Huang, Congfang
  organization: Department of Industrial and Systems Engineering, University of Wisconsin-Madison
– sequence: 2
  givenname: David
  orcidid: 0000-0002-2654-5821
  surname: Blondheim
  fullname: Blondheim, David
  organization: Mercury Marine, a Division of Brunswick Corporation
– sequence: 3
  givenname: Shiyu
  orcidid: 0000-0002-5902-8812
  surname: Zhou
  fullname: Zhou, Shiyu
  email: shiyuzhou@wisc.edu
  organization: Department of Industrial and Systems Engineering, University of Wisconsin-Madison
BookMark eNp9kEtrwzAMgM3oYG23P7CTYedsfsRJfCxlLyjsssFuRkmc1qWJM9thzb-f2w4GO_QgLIQ-WfpmaNLZTiN0S8k9JSR_8JQUqUgISw_BRbK_QFMqcpYUNBUTNCVSZIkQVFyhmfdbQogsMjpFeoEr2_bgjLcd9mGoRxwT6GwLuxHXOugqmFhpddjY2mMTU-iGBqowONOtce9spb3Hre1MsMfStwkb_Jk4GLFpYa39NbpsYOf1ze87Rx9Pj-_Ll2T19vy6XKySilMZElFKwupMaIAMMilTDjKl0IgszYCIKucFcMmzUpZC5ETyBlhdFqzkpaxZWfA5ujvNjUt9DdoHtbWD6-KXijNOOGXRUuwqTl2Vs9473ajKBDhcGRyYnaJEHaSqk1QVhaqjVLWPKPuH9i6e6MbzED9Bvj_o0e5vqzPUD1WBjcQ
CitedBy_id crossref_primary_10_1007_s10845_024_02511_2
Cites_doi 10.1109/TGRS.2017.2786718
10.1109/ITNEC48623.2020.9085163
10.1007/978-3-030-68799-1_35
10.1115/MSEC2023-105080
10.1109/TMI.2016.2535302
10.1016/j.compbiomed.2015.07.006
10.1002/aic.690370209
10.1109/IJCNN.2008.4634187
10.1109/CVPR.2019.00982
10.1109/JPROC.2021.3052449
10.1007/s10586-017-1117-8
10.1137/S0895479898346995
10.1109/ICTAI.2019.00028
10.1109/TNNLS.2020.3038659
10.1109/WACV57701.2024.00020
10.1109/CVPR.2016.70
10.1016/j.neucom.2013.09.055
10.1109/AISC56616.2023.10085348
10.1016/j.matpr.2020.03.622
10.1016/j.media.2019.01.010
10.1109/ICPR48806.2021.9412109
10.1007/BF02310791
10.3390/s20123336
10.1109/WACV51458.2022.00188
10.1007/978-3-030-61609-0_38
10.1007/978-3-319-46493-0_38
10.1016/j.knosys.2016.01.027
10.1007/978-3-030-33778-0_37
10.1016/j.neucom.2021.12.093
10.1145/3422622
10.1007/978-3-031-20056-4_23
10.1145/3097983.3098052
10.1016/j.ymssp.2019.106495
10.1007/BF02289464
10.1007/s10845-020-01583-0
10.1109/CVPR52688.2022.01392
10.1007/978-3-642-23783-6_41
10.1177/1475921710388972
10.1137/07070111X
10.1007/978-3-319-06605-9_6
10.1145/3439950
10.1080/00207549608905062
10.3390/rs15061679
10.1109/WACV57701.2024.00205
10.1109/LGRS.2015.2421813
10.21203/rs.3.rs-1211832/v1
10.1109/CVPR.2015.7298594
10.1109/COASE.2019.8843313
10.1007/s10845-021-01768-1
10.1109/ICASSP49357.2023.10096400
10.1007/s10762-010-9630-3
10.1002/smll.202205977
10.1504/IJCAET.2018.094328
10.1016/j.sigpro.2021.108370
10.1109/36.752194
10.1109/ACCESS.2019.2921912
10.1007/s10845-021-01842-8
10.1126/science.1127647
10.1109/JSTARS.2012.2189200
10.4249/scholarpedia.1883
10.1007/978-3-030-65414-6_11
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
DOI 10.1007/s10845-024-02435-x
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Statistics
EISSN 1572-8145
EndPage 4409
ExternalDocumentID 10_1007_s10845_024_02435_x
GrantInformation_xml – fundername: Division of Civil, Mechanical and Manufacturing Innovation
  grantid: 2323082
  funderid: http://dx.doi.org/10.13039/100000147
GroupedDBID -Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
3-Y
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
7X7
88E
8AO
8FE
8FG
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHQJS
AHSBF
AHWEU
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M4Y
M7S
MA-
MK~
ML~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
OAM
OVD
P19
P2P
P62
P9P
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZYFGU
~A9
~EX
AAYXX
AFFHD
CITATION
7SC
7TB
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
ID FETCH-LOGICAL-c319t-5b902d65eaa6a69943a941af5646a05c738a3936b9b557093fa2db82b3b9d2b83
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001271457600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0956-5515
IngestDate Wed Nov 05 08:35:02 EST 2025
Sat Nov 29 07:34:47 EST 2025
Tue Nov 18 22:38:59 EST 2025
Wed Jul 16 06:29:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Tensor decomposition
X-ray image
Generative adversarial networks
Anomaly detection
Convolutional variational autoencoder
Pattern extraction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-5b902d65eaa6a69943a941af5646a05c738a3936b9b557093fa2db82b3b9d2b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0488-1573
0000-0002-2654-5821
0000-0002-5902-8812
PQID 3230312845
PQPubID 32407
PageCount 21
ParticipantIDs proquest_journals_3230312845
crossref_citationtrail_10_1007_s10845_024_02435_x
crossref_primary_10_1007_s10845_024_02435_x
springer_journals_10_1007_s10845_024_02435_x
PublicationCentury 2000
PublicationDate 20250800
2025-08-00
20250801
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 8
  year: 2025
  text: 20250800
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: London
PublicationTitle Journal of intelligent manufacturing
PublicationTitleAbbrev J Intell Manuf
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References GE Hinton (2435_CR19) 2006; 313
S Larsen (2435_CR33) 2022; 33
2435_CR74
2435_CR73
2435_CR72
2435_CR78
2435_CR76
JD Carroll (2435_CR6) 1970; 35
T-W Tang (2435_CR65) 2020; 20
2435_CR79
JA Jablonski (2435_CR23) 2015; 12
N Tajbakhsh (2435_CR64) 2016; 35
2435_CR39
MA Kramer (2435_CR30) 1991; 37
R Kumari (2435_CR31) 2013; 3
M Fahim (2435_CR11) 2019; 7
LR Tucker (2435_CR67) 1966; 31
A Ng (2435_CR40) 2011; 72
L Huang (2435_CR21) 2006; 19
L Ruff (2435_CR52) 2021; 109
G Pang (2435_CR42) 2021; 54
2435_CR41
D Singh (2435_CR60) 2012; 1
L-K Soh (2435_CR62) 1999; 37
J An (2435_CR1) 2015; 2
SS Sarikan (2435_CR54) 2018; 140
2435_CR49
2435_CR48
A Karami (2435_CR26) 2012; 5
2435_CR47
I Goodfellow (2435_CR14) 2020; 63
L Ma (2435_CR36) 2010; 31
Y Pu (2435_CR46) 2016; 29
X Xia (2435_CR71) 2022; 493
P Zhan (2435_CR77) 2021; 32
2435_CR51
2435_CR50
I Goodfellow (2435_CR13) 2014; 27
2435_CR10
2435_CR53
2435_CR16
2435_CR15
2435_CR59
2435_CR58
2435_CR7
LE Peterson (2435_CR43) 2009; 4
2435_CR18
2435_CR8
2435_CR3
T Schlegl (2435_CR56) 2019; 54
P Vincent (2435_CR68) 2010; 11
2435_CR5
H Fanaee-T (2435_CR12) 2016; 98
E Prifti (2435_CR44) 2023; 19
W Shang (2435_CR57) 2023; 15
A Hage Chehade (2435_CR17) 2022; 45
TG Kolda (2435_CR29) 2009; 51
L Li (2435_CR34) 2020; 33
W Wang (2435_CR70) 2021; 32
L Mujica (2435_CR38) 2011; 10
SE Sofuoglu (2435_CR61) 2022; 192
2435_CR63
L De Lathauwer (2435_CR9) 2000; 21
2435_CR22
2435_CR66
2435_CR20
D Kwon (2435_CR32) 2019; 22
C-Y Liou (2435_CR35) 2014; 139
I Beheshti (2435_CR4) 2015; 64
2435_CR27
A Prokhorov (2435_CR45) 2001
2435_CR69
2435_CR24
2435_CR28
P Mohanaiah (2435_CR37) 2013; 3
H Sarmadi (2435_CR55) 2020; 140
F Aparisi (2435_CR2) 1996; 34
Q Zhang (2435_CR75) 2021; 34
J Kamalakannan (2435_CR25) 2018; 10
References_xml – volume: 27
  start-page: 2672
  year: 2014
  ident: 2435_CR13
  publication-title: Advances in Neural Information Processing Systems
– ident: 2435_CR72
  doi: 10.1109/TGRS.2017.2786718
– ident: 2435_CR7
  doi: 10.1109/ITNEC48623.2020.9085163
– ident: 2435_CR10
  doi: 10.1007/978-3-030-68799-1_35
– ident: 2435_CR58
  doi: 10.1115/MSEC2023-105080
– volume: 35
  start-page: 1299
  issue: 5
  year: 2016
  ident: 2435_CR64
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2016.2535302
– volume: 64
  start-page: 208
  year: 2015
  ident: 2435_CR4
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2015.07.006
– volume: 37
  start-page: 233
  issue: 2
  year: 1991
  ident: 2435_CR30
  publication-title: AIChE Journal
  doi: 10.1002/aic.690370209
– ident: 2435_CR20
  doi: 10.1109/IJCNN.2008.4634187
– ident: 2435_CR5
  doi: 10.1109/CVPR.2019.00982
– volume: 109
  start-page: 756
  issue: 5
  year: 2021
  ident: 2435_CR52
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2021.3052449
– volume: 19
  start-page: 617
  year: 2006
  ident: 2435_CR21
  publication-title: Advances in Neural Information Processing Systems
– volume: 22
  start-page: 949
  year: 2019
  ident: 2435_CR32
  publication-title: Cluster Computing
  doi: 10.1007/s10586-017-1117-8
– volume: 21
  start-page: 1324
  issue: 4
  year: 2000
  ident: 2435_CR9
  publication-title: SIAM Journal on Matrix Analysis and Applications
  doi: 10.1137/S0895479898346995
– ident: 2435_CR41
  doi: 10.1109/ICTAI.2019.00028
– volume: 33
  start-page: 1037
  issue: 3
  year: 2020
  ident: 2435_CR34
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2020.3038659
– ident: 2435_CR3
  doi: 10.1109/WACV57701.2024.00020
– ident: 2435_CR76
  doi: 10.1109/CVPR.2016.70
– volume: 139
  start-page: 84
  year: 2014
  ident: 2435_CR35
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.09.055
– ident: 2435_CR59
– ident: 2435_CR74
– ident: 2435_CR39
  doi: 10.1109/AISC56616.2023.10085348
– volume: 140
  start-page: 64
  year: 2018
  ident: 2435_CR54
  publication-title: Procedia Computer Science
  doi: 10.1016/j.matpr.2020.03.622
– volume: 54
  start-page: 30
  year: 2019
  ident: 2435_CR56
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2019.01.010
– ident: 2435_CR50
  doi: 10.1109/ICPR48806.2021.9412109
– volume: 35
  start-page: 283
  issue: 3
  year: 1970
  ident: 2435_CR6
  publication-title: Psychometrika
  doi: 10.1007/BF02310791
– volume: 20
  start-page: 3336
  issue: 12
  year: 2020
  ident: 2435_CR65
  publication-title: Sensors
  doi: 10.3390/s20123336
– ident: 2435_CR16
  doi: 10.1109/WACV51458.2022.00188
– ident: 2435_CR47
  doi: 10.1007/978-3-030-61609-0_38
– ident: 2435_CR15
– ident: 2435_CR18
  doi: 10.1007/978-3-319-46493-0_38
– volume: 98
  start-page: 130
  year: 2016
  ident: 2435_CR12
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2016.01.027
– ident: 2435_CR53
  doi: 10.1007/978-3-030-33778-0_37
– volume: 493
  start-page: 497
  year: 2022
  ident: 2435_CR71
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.12.093
– volume-title: Hotelling t2-distribution. Encyclopedia of Mathematics
  year: 2001
  ident: 2435_CR45
– volume: 1
  start-page: 243
  issue: 6
  year: 2012
  ident: 2435_CR60
  publication-title: International Journal of Engineering and Advanced Technology (IJEAT)
– volume: 63
  start-page: 139
  issue: 11
  year: 2020
  ident: 2435_CR14
  publication-title: Communications of the ACM
  doi: 10.1145/3422622
– ident: 2435_CR79
  doi: 10.1007/978-3-031-20056-4_23
– ident: 2435_CR78
  doi: 10.1145/3097983.3098052
– volume: 140
  year: 2020
  ident: 2435_CR55
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2019.106495
– volume: 31
  start-page: 279
  issue: 3
  year: 1966
  ident: 2435_CR67
  publication-title: Psychometrika
  doi: 10.1007/BF02289464
– volume: 32
  start-page: 1711
  year: 2021
  ident: 2435_CR70
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-020-01583-0
– volume: 11
  start-page: 3371
  issue: 12
  year: 2010
  ident: 2435_CR68
  publication-title: Journal of Machine Learning Research
– volume: 72
  start-page: 1
  issue: 2011
  year: 2011
  ident: 2435_CR40
  publication-title: CS294A Lecture notes
– ident: 2435_CR51
  doi: 10.1109/CVPR52688.2022.01392
– ident: 2435_CR49
  doi: 10.1007/978-3-642-23783-6_41
– volume: 10
  start-page: 539
  issue: 5
  year: 2011
  ident: 2435_CR38
  publication-title: Structural Health Monitoring
  doi: 10.1177/1475921710388972
– volume: 51
  start-page: 455
  issue: 3
  year: 2009
  ident: 2435_CR29
  publication-title: SIAM Review
  doi: 10.1137/07070111X
– ident: 2435_CR66
– ident: 2435_CR24
  doi: 10.1007/978-3-319-06605-9_6
– volume: 54
  start-page: 1
  issue: 2
  year: 2021
  ident: 2435_CR42
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/3439950
– volume: 34
  start-page: 2853
  issue: 10
  year: 1996
  ident: 2435_CR2
  publication-title: International Journal of Production Research
  doi: 10.1080/00207549608905062
– volume: 15
  start-page: 1679
  issue: 6
  year: 2023
  ident: 2435_CR57
  publication-title: Remote Sensing
  doi: 10.3390/rs15061679
– ident: 2435_CR22
  doi: 10.1109/WACV57701.2024.00205
– volume: 12
  start-page: 1725
  issue: 8
  year: 2015
  ident: 2435_CR23
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2015.2421813
– volume: 34
  start-page: 16280
  year: 2021
  ident: 2435_CR75
  publication-title: Advances in Neural Information Processing Systems
– volume: 2
  start-page: 1
  issue: 1
  year: 2015
  ident: 2435_CR1
  publication-title: Special Lecture on IE
– volume: 45
  start-page: 729
  issue: 3
  year: 2022
  ident: 2435_CR17
  publication-title: Physical and Engineering Sciences in Medicine
  doi: 10.21203/rs.3.rs-1211832/v1
– ident: 2435_CR63
  doi: 10.1109/CVPR.2015.7298594
– volume: 3
  start-page: 1686
  issue: 4
  year: 2013
  ident: 2435_CR31
  publication-title: International Journal of Engineering Research and Applications
– ident: 2435_CR8
– ident: 2435_CR73
  doi: 10.1109/COASE.2019.8843313
– ident: 2435_CR69
– volume: 32
  start-page: 1669
  year: 2021
  ident: 2435_CR77
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-021-01768-1
– ident: 2435_CR28
  doi: 10.1109/ICASSP49357.2023.10096400
– volume: 29
  start-page: 2360
  year: 2016
  ident: 2435_CR46
  publication-title: Advances in Neural Information Processing Systems
– volume: 31
  start-page: 753
  issue: 6
  year: 2010
  ident: 2435_CR36
  publication-title: Journal of Infrared, Millimeter, and Terahertz Waves
  doi: 10.1007/s10762-010-9630-3
– volume: 19
  start-page: 2205977
  issue: 16
  year: 2023
  ident: 2435_CR44
  publication-title: Small (Weinheim an der Bergstrasse, Germany)
  doi: 10.1002/smll.202205977
– ident: 2435_CR48
– volume: 10
  start-page: 504
  issue: 5
  year: 2018
  ident: 2435_CR25
  publication-title: International Journal of Computer Aided Engineering and Technology
  doi: 10.1504/IJCAET.2018.094328
– volume: 192
  year: 2022
  ident: 2435_CR61
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2021.108370
– volume: 37
  start-page: 780
  issue: 2
  year: 1999
  ident: 2435_CR62
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/36.752194
– volume: 7
  start-page: 81664
  year: 2019
  ident: 2435_CR11
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2921912
– volume: 33
  start-page: 457
  issue: 2
  year: 2022
  ident: 2435_CR33
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-021-01842-8
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 2435_CR19
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 5
  start-page: 444
  issue: 2
  year: 2012
  ident: 2435_CR26
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2012.2189200
– volume: 4
  start-page: 1883
  issue: 2
  year: 2009
  ident: 2435_CR43
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.1883
– ident: 2435_CR27
  doi: 10.1007/978-3-030-65414-6_11
– volume: 3
  start-page: 1
  issue: 5
  year: 2013
  ident: 2435_CR37
  publication-title: International Journal of Scientific and Research Publications
SSID ssj0009861
Score 2.4180627
Snippet Process monitoring and anomaly detection in manufacturing production systems are of vital importance in the consistency, reliability, and quality of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4389
SubjectTerms Anomalies
Business and Management
Control
Criteria
Decomposition
Deep learning
Hypothesis testing
Intelligent manufacturing systems
Machine learning
Machines
Manufacturing
Manufacturing industry
Mechatronics
Monitoring
Principal components analysis
Processes
Production
Robotics
Statistical analysis
Statistical methods
Statistics
Title A comparison study on anomaly detection methods in manufacturing process monitoring with X-ray images
URI https://link.springer.com/article/10.1007/s10845-024-02435-x
https://www.proquest.com/docview/3230312845
Volume 36
WOSCitedRecordID wos001271457600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-8145
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA4yPejB6VScTsnBmxba5keT4xCHBxHxF7uVJE1hsHVj7cT99yZpu05RQQ-F0KSl5CXvvTT5vg-AixRHNDVLDU9HnHoYCeMHWUK8MEkTZY2OteOZvYvu79lwyB8qUFhen3avtySdp14DuzFs0cTYXoh4JnPcNOGOWcGGx6fXhmqXOZZUx7Bn8gFSQWW-f8fncNTkmF-2RV20GbT_9517YLfKLmG_HA77YENnHdCulRtgNZE7YGeNhvAA6D5UKzlC6AhnoSmIbDoR4yVMdOHOa2WwlJvO4cgURbawoAiHcoSzEm4AJ85DuFv2By8cenOxhKOJcVr5IXgZ3Dxf33qV_IKnzLwsPCK5HyaUaCGooJwbQ3IciJRQTIVPVISYQBxRyaXl8eIoFWEiWSiR5EkoGToCrWya6WMAI5oE2FSxVEWY-KkITNYlVIg05ySVfhcEtRViVXGTW4mMcdywKttejU2Pxq5X4_cuuFw9MyuZOX5t3auNG1ezNI-RWX8hG6BJF1zVxmyqf37byd-an4Lt0MoGu3ODPdAq5gt9BrbUWzHK5-du9H4AwJPp_A
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9kCuqD06k4nZoH37SwNR9tHoc4Js4hOmVvJW1TGGzdWDtx_71J2topKuhDITRpKHfJ3eXj9zuAi4g4LFJLDUs6nFkEC2UH3ZBadhiFgVY6kYZntuf0--5wyB9yUFhS3HYvjiSNpV4Bu7lEo4mJfjC1VOS4TpTH0oz5j08vJdWua1hSDcOeigdoDpX5vo_P7qiMMb8cixpv06n-7z93YSePLlE7Gw57sCbjGlSLzA0on8g12F6hIdwH2UbBRzpCZAhnkSqIeDoR4yUKZWrua8UoSzedoJEqinihQREG5YhmGdwATYyFMK_0Bi8aWnOxRKOJMlrJATx3bgbXXStPv2AFal6mFvV50w4ZlUIwwThXiuSkJSLKCBNNGjjYFZhj5nNf83hxHAk79F3bxz4Pbd_Fh1CJp7E8AuSwsEVUlRsFDqHNSLRU1CUCG0vOaeQ369AqtOAFOTe5TpEx9kpWZS1VT0nUM1L13upw-fHNLGPm-LV1o1Cul8_SxMNq_YW1g6Z1uCqUWVb_3Nvx35qfw2Z3cN_zerf9uxPYsnUKYXOHsAGVdL6Qp7ARvKajZH5mRvI7wDHs4A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9ERfTB-YnTqXnwTcu25qPN41CH4hiCH-ytpE0CA1fH1on7703SdpuigvhQCE0aSi53uST3-x3AmSYB02ar4amAM49gYexgKKnnSy0TK3SiHM9sJ-h2w16P3y-g-F20e3klmWMaLEtTmtWHUtcXgG8hschiYh9MPeNFrhAbSG_36w_Pc9rd0DGmOrY94xvQAjbzfR-fl6a5v_nlitStPO3K__95CzYLrxO18mmyDUsq3YFKmdEBFQq-AxsL9IS7oFoomaUpRI6IFpmCSF8H4mWKpMpcHFeK8jTUY9Q3RZFOLFjCoR_RMIchoIGzHO6VPfhFPW8kpqg_MMZsvAdP7evHyxuvSMvgJUZfM4_GvOFLRpUQTDDOjYA5aQpNGWGiQZMAhwJzzGIeW34vjrXwZRz6MY659OMQ78Ny-pqqA0ABk01iqkKdBIQ2tGgab0wkPlacUx03qtAsJRIlBWe5TZ3xEs3Zlu2oRmZEIzeq0XsVzmffDHPGjl9b10pBR4X2jiNs9mXYLty0ChelYOfVP_d2-Lfmp7B2f9WOOrfduyNY921mYRdaWIPlbDRRx7CavGX98ejETeoPYKz1xA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+study+on+anomaly+detection+methods+in+manufacturing+process+monitoring+with+X-ray+images&rft.jtitle=Journal+of+intelligent+manufacturing&rft.au=Huang%2C+Congfang&rft.au=Blondheim%2C+David&rft.au=Zhou%2C+Shiyu&rft.date=2025-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0956-5515&rft.eissn=1572-8145&rft.volume=36&rft.issue=6&rft.spage=4389&rft.epage=4409&rft_id=info:doi/10.1007%2Fs10845-024-02435-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5515&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5515&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5515&client=summon