Algebraic method for LU decomposition of dual quaternion matrix and its corresponding structure-preserving algorithm

Due to the increasing applications of dual quaternion and their matrices in recent years, as well as the significance of LU decomposition as a matrix decomposition technique, in this paper, we propose dual quaternion Gaussian transformation and obtain dual quaternion LU decomposition by using Gaussi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms Jg. 97; H. 3; S. 1367 - 1382
Hauptverfasser: Wang, Tao, Li, Ying, Wei, Musheng, Xi, Yimeng, Zhang, Mingcui
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.11.2024
Springer Nature B.V
Schlagworte:
ISSN:1017-1398, 1572-9265
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the increasing applications of dual quaternion and their matrices in recent years, as well as the significance of LU decomposition as a matrix decomposition technique, in this paper, we propose dual quaternion Gaussian transformation and obtain dual quaternion LU decomposition by using Gaussian transformation. We also use the total order of dual numbers to obtain the partial pivoting dual quaternion LU decomposition. Based on the real structure-preserving algorithm of quaternion matrix, we propose the real structure-preserving algorithms of LU decomposition and partial pivoting LU decomposition for dual quaternion matrix. Numerical experiments have verified the effectiveness of the new real structure-preserving approaches.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-024-01753-8