Algebraic method for LU decomposition of dual quaternion matrix and its corresponding structure-preserving algorithm
Due to the increasing applications of dual quaternion and their matrices in recent years, as well as the significance of LU decomposition as a matrix decomposition technique, in this paper, we propose dual quaternion Gaussian transformation and obtain dual quaternion LU decomposition by using Gaussi...
Uloženo v:
| Vydáno v: | Numerical algorithms Ročník 97; číslo 3; s. 1367 - 1382 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.11.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 1017-1398, 1572-9265 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Due to the increasing applications of dual quaternion and their matrices in recent years, as well as the significance of LU decomposition as a matrix decomposition technique, in this paper, we propose dual quaternion Gaussian transformation and obtain dual quaternion LU decomposition by using Gaussian transformation. We also use the total order of dual numbers to obtain the partial pivoting dual quaternion LU decomposition. Based on the real structure-preserving algorithm of quaternion matrix, we propose the real structure-preserving algorithms of LU decomposition and partial pivoting LU decomposition for dual quaternion matrix. Numerical experiments have verified the effectiveness of the new real structure-preserving approaches. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1017-1398 1572-9265 |
| DOI: | 10.1007/s11075-024-01753-8 |