On the spectrum of the Page and the Chen–LeBrun–Weber metrics
We give bounds on the first non-zero eigenvalue of the scalar Laplacian for both the Page and the Chen–LeBrun–Weber Einstein metrics. One notable feature is that these bounds are obtained without explicit knowledge of the metrics or numerical approximation to them. Our method also allows the estimat...
Gespeichert in:
| Veröffentlicht in: | Annals of global analysis and geometry Jg. 46; H. 1; S. 87 - 101 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Dordrecht
Springer Netherlands
01.06.2014
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0232-704X, 1572-9060 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We give bounds on the first non-zero eigenvalue of the scalar Laplacian for both the Page and the Chen–LeBrun–Weber Einstein metrics. One notable feature is that these bounds are obtained without explicit knowledge of the metrics or numerical approximation to them. Our method also allows the estimation of the invariant part of the spectrum for both metrics. We go on to discuss an application of these bounds to the linear stability of the metrics. We also give numerical evidence to suggest that the bounds for both metrics are extremely close to the actual eigenvalue. |
|---|---|
| Bibliographie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0232-704X 1572-9060 |
| DOI: | 10.1007/s10455-014-9412-6 |