On the spectrum of the Page and the Chen–LeBrun–Weber metrics
We give bounds on the first non-zero eigenvalue of the scalar Laplacian for both the Page and the Chen–LeBrun–Weber Einstein metrics. One notable feature is that these bounds are obtained without explicit knowledge of the metrics or numerical approximation to them. Our method also allows the estimat...
Uloženo v:
| Vydáno v: | Annals of global analysis and geometry Ročník 46; číslo 1; s. 87 - 101 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.06.2014
Springer Nature B.V |
| Témata: | |
| ISSN: | 0232-704X, 1572-9060 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We give bounds on the first non-zero eigenvalue of the scalar Laplacian for both the Page and the Chen–LeBrun–Weber Einstein metrics. One notable feature is that these bounds are obtained without explicit knowledge of the metrics or numerical approximation to them. Our method also allows the estimation of the invariant part of the spectrum for both metrics. We go on to discuss an application of these bounds to the linear stability of the metrics. We also give numerical evidence to suggest that the bounds for both metrics are extremely close to the actual eigenvalue. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0232-704X 1572-9060 |
| DOI: | 10.1007/s10455-014-9412-6 |