Determinants of Period Matrices and an Application to Selberg's Multidimensional Beta Integral

In work on critical values of linear functions and hyperplane arrangements, A. Varchenko (Izv. Akad. Nauk SSSR Ser. Mat.53 (1989), 1206–1235; 54 (1990), 146–158) defined certain period matrices whose entries are Euler-type integrals representing hypergeometric functions of several variables and deri...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advances in applied mathematics Ročník 28; číslo 3-4; s. 602 - 633
Hlavní autori: Richards, Donald, Zheng, Qifu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: San Diego, CA Elsevier Inc 01.04.2002
Elsevier
Predmet:
ISSN:0196-8858, 1090-2074
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In work on critical values of linear functions and hyperplane arrangements, A. Varchenko (Izv. Akad. Nauk SSSR Ser. Mat.53 (1989), 1206–1235; 54 (1990), 146–158) defined certain period matrices whose entries are Euler-type integrals representing hypergeometric functions of several variables and derived remarkable closed-form expressions for the determinants of those matrices. In this article, we present elementary proofs of some of Varchenko's determinant formulas. By the same method, we obtain proofs of variations of Varchenko's determinants. As an application, we deduce new proofs of the multidimensional beta integrals of Selberg and of Aomoto. Further, we obtain a new proof of a determinant formula of A. Varchenko (Funct. Anal. Appl.25 (1999), 304–305) in which the entries are multidimensional Selberg-type integrals.
ISSN:0196-8858
1090-2074
DOI:10.1006/aama.2001.0798