Determinants of Period Matrices and an Application to Selberg's Multidimensional Beta Integral

In work on critical values of linear functions and hyperplane arrangements, A. Varchenko (Izv. Akad. Nauk SSSR Ser. Mat.53 (1989), 1206–1235; 54 (1990), 146–158) defined certain period matrices whose entries are Euler-type integrals representing hypergeometric functions of several variables and deri...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in applied mathematics Ročník 28; číslo 3-4; s. 602 - 633
Hlavní autoři: Richards, Donald, Zheng, Qifu
Médium: Journal Article
Jazyk:angličtina
Vydáno: San Diego, CA Elsevier Inc 01.04.2002
Elsevier
Témata:
ISSN:0196-8858, 1090-2074
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In work on critical values of linear functions and hyperplane arrangements, A. Varchenko (Izv. Akad. Nauk SSSR Ser. Mat.53 (1989), 1206–1235; 54 (1990), 146–158) defined certain period matrices whose entries are Euler-type integrals representing hypergeometric functions of several variables and derived remarkable closed-form expressions for the determinants of those matrices. In this article, we present elementary proofs of some of Varchenko's determinant formulas. By the same method, we obtain proofs of variations of Varchenko's determinants. As an application, we deduce new proofs of the multidimensional beta integrals of Selberg and of Aomoto. Further, we obtain a new proof of a determinant formula of A. Varchenko (Funct. Anal. Appl.25 (1999), 304–305) in which the entries are multidimensional Selberg-type integrals.
ISSN:0196-8858
1090-2074
DOI:10.1006/aama.2001.0798