A hybrid chaotic quantum evolutionary algorithm for resource combinatorial optimization in manufacturing grid system

Resource composition in manufacturing grid (MGrid) system is one of the recent critical issues of MGrid researches. Especially, resource combinatorial optimization (RCO) becomes more challenging when multiple optimal criteria are considered in MGrid system. Based on the quantum evolution theory, we...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology Vol. 52; no. 5-8; pp. 821 - 831
Main Authors: Zhang, Haijun, Hu, Yefa
Format: Journal Article
Language:English
Published: London Springer-Verlag 01.02.2011
Springer Nature B.V
Subjects:
ISSN:0268-3768, 1433-3015
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Resource composition in manufacturing grid (MGrid) system is one of the recent critical issues of MGrid researches. Especially, resource combinatorial optimization (RCO) becomes more challenging when multiple optimal criteria are considered in MGrid system. Based on the quantum evolution theory, we propose a hybrid chaotic quantum evolutionary algorithm (CQEA) for RCO problems. We also propose a novel resource encoding method for CQEA, which is dynamic and flexible. The experimental results show that the proposed CQEA is effective, efficient, and scalable for the RCO problem in MGrid system.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-010-2742-z