A hybrid chaotic quantum evolutionary algorithm for resource combinatorial optimization in manufacturing grid system

Resource composition in manufacturing grid (MGrid) system is one of the recent critical issues of MGrid researches. Especially, resource combinatorial optimization (RCO) becomes more challenging when multiple optimal criteria are considered in MGrid system. Based on the quantum evolution theory, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology Jg. 52; H. 5-8; S. 821 - 831
Hauptverfasser: Zhang, Haijun, Hu, Yefa
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer-Verlag 01.02.2011
Springer Nature B.V
Schlagworte:
ISSN:0268-3768, 1433-3015
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Resource composition in manufacturing grid (MGrid) system is one of the recent critical issues of MGrid researches. Especially, resource combinatorial optimization (RCO) becomes more challenging when multiple optimal criteria are considered in MGrid system. Based on the quantum evolution theory, we propose a hybrid chaotic quantum evolutionary algorithm (CQEA) for RCO problems. We also propose a novel resource encoding method for CQEA, which is dynamic and flexible. The experimental results show that the proposed CQEA is effective, efficient, and scalable for the RCO problem in MGrid system.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-010-2742-z