A hybrid chaotic quantum evolutionary algorithm for resource combinatorial optimization in manufacturing grid system
Resource composition in manufacturing grid (MGrid) system is one of the recent critical issues of MGrid researches. Especially, resource combinatorial optimization (RCO) becomes more challenging when multiple optimal criteria are considered in MGrid system. Based on the quantum evolution theory, we...
Gespeichert in:
| Veröffentlicht in: | International journal of advanced manufacturing technology Jg. 52; H. 5-8; S. 821 - 831 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Springer-Verlag
01.02.2011
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0268-3768, 1433-3015 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Resource composition in manufacturing grid (MGrid) system is one of the recent critical issues of MGrid researches. Especially, resource combinatorial optimization (RCO) becomes more challenging when multiple optimal criteria are considered in MGrid system. Based on the quantum evolution theory, we propose a hybrid chaotic quantum evolutionary algorithm (CQEA) for RCO problems. We also propose a novel resource encoding method for CQEA, which is dynamic and flexible. The experimental results show that the proposed CQEA is effective, efficient, and scalable for the RCO problem in MGrid system. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0268-3768 1433-3015 |
| DOI: | 10.1007/s00170-010-2742-z |