Eigenvalues and Eigenfunctions of One-Dimensional Fractal Laplacians

We study the eigenvalues and eigenfunctions of one-dimensional weighted fractal Laplacians. These Laplacians are defined by self-similar measures with overlaps. We first prove the existence of eigenvalues and eigenfunctions. We then set up a framework for one-dimensional measures to discretize the e...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of nonlinear mathematical physics Ročník 30; číslo 3; s. 996 - 1010
Hlavní autori: Tang, Wei, Guo, Jia
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Springer Netherlands 01.09.2023
Springer Nature B.V
Predmet:
ISSN:1776-0852, 1402-9251, 1776-0852
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We study the eigenvalues and eigenfunctions of one-dimensional weighted fractal Laplacians. These Laplacians are defined by self-similar measures with overlaps. We first prove the existence of eigenvalues and eigenfunctions. We then set up a framework for one-dimensional measures to discretize the equation defining the eigenvalues and eigenfunctions, and obtain numerical approximations of the eigenvalue and eigenfunction by using the finite element method. Finally, we show that the numerical eigenvalues and eigenfunctions converge to the actual ones and obtain the rate of convergence.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1776-0852
1402-9251
1776-0852
DOI:10.1007/s44198-023-00113-9