Eigenvalues and Eigenfunctions of One-Dimensional Fractal Laplacians

We study the eigenvalues and eigenfunctions of one-dimensional weighted fractal Laplacians. These Laplacians are defined by self-similar measures with overlaps. We first prove the existence of eigenvalues and eigenfunctions. We then set up a framework for one-dimensional measures to discretize the e...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of nonlinear mathematical physics Ročník 30; číslo 3; s. 996 - 1010
Hlavní autoři: Tang, Wei, Guo, Jia
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.09.2023
Springer Nature B.V
Témata:
ISSN:1776-0852, 1402-9251, 1776-0852
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study the eigenvalues and eigenfunctions of one-dimensional weighted fractal Laplacians. These Laplacians are defined by self-similar measures with overlaps. We first prove the existence of eigenvalues and eigenfunctions. We then set up a framework for one-dimensional measures to discretize the equation defining the eigenvalues and eigenfunctions, and obtain numerical approximations of the eigenvalue and eigenfunction by using the finite element method. Finally, we show that the numerical eigenvalues and eigenfunctions converge to the actual ones and obtain the rate of convergence.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1776-0852
1402-9251
1776-0852
DOI:10.1007/s44198-023-00113-9