Dispersing Obnoxious Facilities on a Graph

We study a continuous facility location problem on a graph where all edges have unit length and where the facilities may also be positioned in the interior of the edges. The goal is to position as many facilities as possible subject to the condition that any two facilities have at least distance δ f...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Algorithmica Ročník 83; číslo 6; s. 1734 - 1749
Hlavní autori: Grigoriev, Alexander, Hartmann, Tim A., Lendl, Stefan, Woeginger, Gerhard J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.06.2021
Springer Nature B.V
Predmet:
ISSN:0178-4617, 1432-0541
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We study a continuous facility location problem on a graph where all edges have unit length and where the facilities may also be positioned in the interior of the edges. The goal is to position as many facilities as possible subject to the condition that any two facilities have at least distance δ from each other. We investigate the complexity of this problem in terms of the rational parameter δ . The problem is polynomially solvable, if the numerator of δ is 1 or 2, while all other cases turn out to be NP-hard.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-021-00800-3