Dispersing Obnoxious Facilities on a Graph

We study a continuous facility location problem on a graph where all edges have unit length and where the facilities may also be positioned in the interior of the edges. The goal is to position as many facilities as possible subject to the condition that any two facilities have at least distance δ f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithmica Ročník 83; číslo 6; s. 1734 - 1749
Hlavní autoři: Grigoriev, Alexander, Hartmann, Tim A., Lendl, Stefan, Woeginger, Gerhard J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.06.2021
Springer Nature B.V
Témata:
ISSN:0178-4617, 1432-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study a continuous facility location problem on a graph where all edges have unit length and where the facilities may also be positioned in the interior of the edges. The goal is to position as many facilities as possible subject to the condition that any two facilities have at least distance δ from each other. We investigate the complexity of this problem in terms of the rational parameter δ . The problem is polynomially solvable, if the numerator of δ is 1 or 2, while all other cases turn out to be NP-hard.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-021-00800-3