Covering a simplex by spheres: complexity and algorithms

Simplex covering optimization problem (SCO) is modeled from the application of covering a simplex by m given balls. It contains the maximin dispersion problem as a special case. In this paper, we prove that (SCO) is NP-hard. We present an enumeration method (EM) to globally solve (SCO) and show that...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of global optimization Ročník 84; číslo 1; s. 119 - 135
Hlavní autoři: Zhang, Tongli, Xia, Yong
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.09.2022
Springer
Springer Nature B.V
Témata:
ISSN:0925-5001, 1573-2916
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Simplex covering optimization problem (SCO) is modeled from the application of covering a simplex by m given balls. It contains the maximin dispersion problem as a special case. In this paper, we prove that (SCO) is NP-hard. We present an enumeration method (EM) to globally solve (SCO) and show that the complexity is strongly polynomial when m is fixed. Numerical experiments demonstrate that EM outperforms CPLEX when m is small. For larger m , we propose an efficient incomplete enumeration method based on linear programming relaxation.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-022-01137-z