Covering a simplex by spheres: complexity and algorithms
Simplex covering optimization problem (SCO) is modeled from the application of covering a simplex by m given balls. It contains the maximin dispersion problem as a special case. In this paper, we prove that (SCO) is NP-hard. We present an enumeration method (EM) to globally solve (SCO) and show that...
Uložené v:
| Vydané v: | Journal of global optimization Ročník 84; číslo 1; s. 119 - 135 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.09.2022
Springer Springer Nature B.V |
| Predmet: | |
| ISSN: | 0925-5001, 1573-2916 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Simplex covering optimization problem (SCO) is modeled from the application of covering a simplex by
m
given balls. It contains the maximin dispersion problem as a special case. In this paper, we prove that (SCO) is NP-hard. We present an enumeration method (EM) to globally solve (SCO) and show that the complexity is strongly polynomial when
m
is fixed. Numerical experiments demonstrate that EM outperforms CPLEX when
m
is small. For larger
m
, we propose an efficient incomplete enumeration method based on linear programming relaxation. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0925-5001 1573-2916 |
| DOI: | 10.1007/s10898-022-01137-z |