A (1+ln2)-approximation algorithm for minimum-cost 2-edge-connectivity augmentation of trees with constant radius
We consider the Tree Augmentation problem: given a graph G=(V,E) with edge-costs and a tree T on V disjoint to E, find a minimum-cost edge-subset F⊆E such that T∪F is 2-edge-connected. Tree Augmentation is equivalent to the problem of finding a minimum-cost edge-cover F⊆E of a laminar set-family. Th...
Saved in:
| Published in: | Theoretical computer science Vol. 489-490; pp. 67 - 74 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
10.06.2013
|
| Subjects: | |
| ISSN: | 0304-3975, 1879-2294 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We consider the Tree Augmentation problem: given a graph G=(V,E) with edge-costs and a tree T on V disjoint to E, find a minimum-cost edge-subset F⊆E such that T∪F is 2-edge-connected. Tree Augmentation is equivalent to the problem of finding a minimum-cost edge-cover F⊆E of a laminar set-family. The best known approximation ratio for Tree Augmentation is 2, even for trees of radius 2. As laminar families play an important role in network design problems, obtaining a better ratio is a major open problem in connectivity network design. We give a (1+ln2)-approximation algorithm for trees of constant radius. Our algorithm is based on a new decomposition of problem feasible solutions, and on an extension of Steiner Tree technique of Zelikovsky to the Set-Cover problem, which may be of independent interest.
•We consider making a tree 2-edge-connected by adding a minimum cost edge set.•We give a (1+ln2)-approximation algorithm for trees of constant radius.•Our algorithm is based on a new decomposition of problem feasible solutions. |
|---|---|
| ISSN: | 0304-3975 1879-2294 |
| DOI: | 10.1016/j.tcs.2013.04.004 |