A (1+ln2)-approximation algorithm for minimum-cost 2-edge-connectivity augmentation of trees with constant radius
We consider the Tree Augmentation problem: given a graph G=(V,E) with edge-costs and a tree T on V disjoint to E, find a minimum-cost edge-subset F⊆E such that T∪F is 2-edge-connected. Tree Augmentation is equivalent to the problem of finding a minimum-cost edge-cover F⊆E of a laminar set-family. Th...
Uloženo v:
| Vydáno v: | Theoretical computer science Ročník 489-490; s. 67 - 74 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
10.06.2013
|
| Témata: | |
| ISSN: | 0304-3975, 1879-2294 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider the Tree Augmentation problem: given a graph G=(V,E) with edge-costs and a tree T on V disjoint to E, find a minimum-cost edge-subset F⊆E such that T∪F is 2-edge-connected. Tree Augmentation is equivalent to the problem of finding a minimum-cost edge-cover F⊆E of a laminar set-family. The best known approximation ratio for Tree Augmentation is 2, even for trees of radius 2. As laminar families play an important role in network design problems, obtaining a better ratio is a major open problem in connectivity network design. We give a (1+ln2)-approximation algorithm for trees of constant radius. Our algorithm is based on a new decomposition of problem feasible solutions, and on an extension of Steiner Tree technique of Zelikovsky to the Set-Cover problem, which may be of independent interest.
•We consider making a tree 2-edge-connected by adding a minimum cost edge set.•We give a (1+ln2)-approximation algorithm for trees of constant radius.•Our algorithm is based on a new decomposition of problem feasible solutions. |
|---|---|
| ISSN: | 0304-3975 1879-2294 |
| DOI: | 10.1016/j.tcs.2013.04.004 |