A PTAS for the cardinality constrained covering with unit balls

In this paper, we address the cardinality constrained covering with unit balls problem: given a positive integer L and a set of n points in Rd, partition them into a minimum number of parts such that each part contains at most L points and it can be covered by a unit ball of the given ℓp metric. Dev...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theoretical computer science Ročník 527; s. 50 - 60
Hlavní autoři: Ghasemi, Taha, Razzazi, Mohammadreza
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 27.03.2014
Témata:
ISSN:0304-3975, 1879-2294
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we address the cardinality constrained covering with unit balls problem: given a positive integer L and a set of n points in Rd, partition them into a minimum number of parts such that each part contains at most L points and it can be covered by a unit ball of the given ℓp metric. Developing a constant-factor approximation algorithm for this problem is an old open problem. By proving a structural property in the problem and applying the shifting strategy and dynamic programming, we derive the first (1+ε)d-approximation nO(1/εd)-time algorithm for this problem when d is a fixed constant.
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2014.01.026