A PTAS for the cardinality constrained covering with unit balls

In this paper, we address the cardinality constrained covering with unit balls problem: given a positive integer L and a set of n points in Rd, partition them into a minimum number of parts such that each part contains at most L points and it can be covered by a unit ball of the given ℓp metric. Dev...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical computer science Vol. 527; pp. 50 - 60
Main Authors: Ghasemi, Taha, Razzazi, Mohammadreza
Format: Journal Article
Language:English
Published: Elsevier B.V 27.03.2014
Subjects:
ISSN:0304-3975, 1879-2294
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we address the cardinality constrained covering with unit balls problem: given a positive integer L and a set of n points in Rd, partition them into a minimum number of parts such that each part contains at most L points and it can be covered by a unit ball of the given ℓp metric. Developing a constant-factor approximation algorithm for this problem is an old open problem. By proving a structural property in the problem and applying the shifting strategy and dynamic programming, we derive the first (1+ε)d-approximation nO(1/εd)-time algorithm for this problem when d is a fixed constant.
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2014.01.026