Sketch of the Theory of Growth of Holomorphic Functions in a Multidimensional Torus

We develop an approach to the theory of growth of the class H (𝕋 n ) of holomorphic functions in a multidimensional torus 𝕋 n based on the structure of elements of this class and well-known results of the heory of growth of entire functions of several complex variables. This approach is illustrated...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of mathematical sciences (New York, N.Y.) Ročník 241; číslo 6; s. 735 - 749
Hlavní autori: Zavyalov, M. N., Maergoiz, L. S.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 09.09.2019
Springer
Predmet:
ISSN:1072-3374, 1573-8795
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We develop an approach to the theory of growth of the class H (𝕋 n ) of holomorphic functions in a multidimensional torus 𝕋 n based on the structure of elements of this class and well-known results of the heory of growth of entire functions of several complex variables. This approach is illustrated in the case where the growth of the function g ∈ H (𝕋 n ) is compared with the growth of its maximum modulus on the skeleton of the polydisk. The properties of the corresponding characteristics of growth of the functions in the class H (𝕋 n ) are studied with their relation to coefficients of the corresponding Laurent series. A comparative analysis of these results and similar assertions of the theory of growth of entire functions of several variables is given.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-019-04459-8