Sketch of the Theory of Growth of Holomorphic Functions in a Multidimensional Torus

We develop an approach to the theory of growth of the class H (𝕋 n ) of holomorphic functions in a multidimensional torus 𝕋 n based on the structure of elements of this class and well-known results of the heory of growth of entire functions of several complex variables. This approach is illustrated...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical sciences (New York, N.Y.) Ročník 241; číslo 6; s. 735 - 749
Hlavní autoři: Zavyalov, M. N., Maergoiz, L. S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 09.09.2019
Springer
Témata:
ISSN:1072-3374, 1573-8795
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We develop an approach to the theory of growth of the class H (𝕋 n ) of holomorphic functions in a multidimensional torus 𝕋 n based on the structure of elements of this class and well-known results of the heory of growth of entire functions of several complex variables. This approach is illustrated in the case where the growth of the function g ∈ H (𝕋 n ) is compared with the growth of its maximum modulus on the skeleton of the polydisk. The properties of the corresponding characteristics of growth of the functions in the class H (𝕋 n ) are studied with their relation to coefficients of the corresponding Laurent series. A comparative analysis of these results and similar assertions of the theory of growth of entire functions of several variables is given.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-019-04459-8