Time-integration of Gaussian variational approximation for the magnetic Schrödinger equation

In the present paper we consider the semiclassical magnetic Schrödinger equation, which describes the dynamics of charged particles under the influence of an electro-magnetic field. The solution of the time-dependent Schrödinger equation is approximated by a single Gaussian wave packet via the time-...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computational physics Ročník 541; s. 114349
Hlavní autori: Scheifinger, Malik, Busch, Kurt, Hochbruck, Marlis, Lasser, Caroline
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 05.11.2025
Predmet:
ISSN:0021-9991
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In the present paper we consider the semiclassical magnetic Schrödinger equation, which describes the dynamics of charged particles under the influence of an electro-magnetic field. The solution of the time-dependent Schrödinger equation is approximated by a single Gaussian wave packet via the time-dependent Dirac–Frenkel variational principle. For the approximation we use ordinary differential equations of motion for the parameters of the variational solution and extend the second-order Boris algorithm for classical mechanics to the quantum mechanical case. In addition, we propose a modified version of the classical fourth-order Runge–Kutta method. Numerical experiments explore parameter convergence and geometric properties. Moreover, we benchmark against the analytical solution of the Penning trap.
ISSN:0021-9991
DOI:10.1016/j.jcp.2025.114349