Time-integration of Gaussian variational approximation for the magnetic Schrödinger equation

In the present paper we consider the semiclassical magnetic Schrödinger equation, which describes the dynamics of charged particles under the influence of an electro-magnetic field. The solution of the time-dependent Schrödinger equation is approximated by a single Gaussian wave packet via the time-...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational physics Ročník 541; s. 114349
Hlavní autoři: Scheifinger, Malik, Busch, Kurt, Hochbruck, Marlis, Lasser, Caroline
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 05.11.2025
Témata:
ISSN:0021-9991
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In the present paper we consider the semiclassical magnetic Schrödinger equation, which describes the dynamics of charged particles under the influence of an electro-magnetic field. The solution of the time-dependent Schrödinger equation is approximated by a single Gaussian wave packet via the time-dependent Dirac–Frenkel variational principle. For the approximation we use ordinary differential equations of motion for the parameters of the variational solution and extend the second-order Boris algorithm for classical mechanics to the quantum mechanical case. In addition, we propose a modified version of the classical fourth-order Runge–Kutta method. Numerical experiments explore parameter convergence and geometric properties. Moreover, we benchmark against the analytical solution of the Penning trap.
ISSN:0021-9991
DOI:10.1016/j.jcp.2025.114349