Improved AutoEncoder With LSTM Module and KL Divergence for Anomaly Detection
The task of anomaly detection is to separate anomalous data from normal data in the dataset. Models such as deep Convolutional AutoEncoder (CAE) and deep support vector data description (SVDD) have been universally used and have demonstrated significant success in detecting anomalies. However, the o...
Saved in:
| Published in: | IEEE transactions on instrumentation and measurement Vol. 73; pp. 1 - 11 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9456, 1557-9662 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!