Improved AutoEncoder With LSTM Module and KL Divergence for Anomaly Detection
The task of anomaly detection is to separate anomalous data from normal data in the dataset. Models such as deep Convolutional AutoEncoder (CAE) and deep support vector data description (SVDD) have been universally used and have demonstrated significant success in detecting anomalies. However, the o...
Uloženo v:
| Vydáno v: | IEEE transactions on instrumentation and measurement Ročník 73; s. 1 - 11 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9456, 1557-9662 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The task of anomaly detection is to separate anomalous data from normal data in the dataset. Models such as deep Convolutional AutoEncoder (CAE) and deep support vector data description (SVDD) have been universally used and have demonstrated significant success in detecting anomalies. However, the over-reconstruction ability of CAE network for anomalous data can easily lead to high false-negative rate in detecting anomalous data. On the other hand, the deep support vector data description (Deep SVDD) model has the drawback of feature collapse, which leads to a decrease in detection accuracy for anomalies. To address these problems, we propose the Improved AutoEncoder with LSTM module and Kullback-Leibler divergence (IAE-LSTM-KL) model in this article. An LSTM network is added after the encoder to memorize feature representations of normal data. Meanwhile, the phenomenon of feature collapse can also be mitigated by penalizing the featured input to SVDD module via KL divergence. The efficacy of the IAE-LSTM-KL model is validated through experiments on both synthetic and real-world datasets. Experimental results show that IAE-LSTM-KL model yields higher detection accuracy for anomalies. In addition, it is also found that the IAE-LSTM-KL model demonstrates enhanced robustness to contaminated outliers in the dataset. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9456 1557-9662 |
| DOI: | 10.1109/TIM.2024.3460931 |