Stabilized SQP Methods in Hilbert Spaces
Based on techniques by (S.J. Wright 1998) for finite-dimensional optimization, we investigate a stabilized sequential quadratic programming method for nonlinear optimization problems in infinite-dimensional Hilbert spaces. The method is shown to achieve fast local convergence even in the absence of...
Uložené v:
| Vydané v: | Numerical functional analysis and optimization Ročník 45; číslo 7-9; s. 456 - 483 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Abingdon
Taylor & Francis
03.07.2024
Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 0163-0563, 1532-2467 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Based on techniques by (S.J. Wright 1998) for finite-dimensional optimization, we investigate a stabilized sequential quadratic programming method for nonlinear optimization problems in infinite-dimensional Hilbert spaces. The method is shown to achieve fast local convergence even in the absence of a constraint qualification, generalizing the results obtained by (S.J. Wright 1998 and W.W. Hager 1999) in finite dimensions to this broader setting. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0163-0563 1532-2467 |
| DOI: | 10.1080/01630563.2024.2384861 |