Stabilized SQP Methods in Hilbert Spaces
Based on techniques by (S.J. Wright 1998) for finite-dimensional optimization, we investigate a stabilized sequential quadratic programming method for nonlinear optimization problems in infinite-dimensional Hilbert spaces. The method is shown to achieve fast local convergence even in the absence of...
Saved in:
| Published in: | Numerical functional analysis and optimization Vol. 45; no. 7-9; pp. 456 - 483 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Abingdon
Taylor & Francis
03.07.2024
Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 0163-0563, 1532-2467 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Based on techniques by (S.J. Wright 1998) for finite-dimensional optimization, we investigate a stabilized sequential quadratic programming method for nonlinear optimization problems in infinite-dimensional Hilbert spaces. The method is shown to achieve fast local convergence even in the absence of a constraint qualification, generalizing the results obtained by (S.J. Wright 1998 and W.W. Hager 1999) in finite dimensions to this broader setting. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0163-0563 1532-2467 |
| DOI: | 10.1080/01630563.2024.2384861 |