Stabilized SQP Methods in Hilbert Spaces
Based on techniques by (S.J. Wright 1998) for finite-dimensional optimization, we investigate a stabilized sequential quadratic programming method for nonlinear optimization problems in infinite-dimensional Hilbert spaces. The method is shown to achieve fast local convergence even in the absence of...
Uloženo v:
| Vydáno v: | Numerical functional analysis and optimization Ročník 45; číslo 7-9; s. 456 - 483 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Taylor & Francis
03.07.2024
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 0163-0563, 1532-2467 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Based on techniques by (S.J. Wright 1998) for finite-dimensional optimization, we investigate a stabilized sequential quadratic programming method for nonlinear optimization problems in infinite-dimensional Hilbert spaces. The method is shown to achieve fast local convergence even in the absence of a constraint qualification, generalizing the results obtained by (S.J. Wright 1998 and W.W. Hager 1999) in finite dimensions to this broader setting. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0163-0563 1532-2467 |
| DOI: | 10.1080/01630563.2024.2384861 |